Size-dependent cellular toxicity and uptake of commercial colloidal gold nanoparticles in DU-145 cells

نویسندگان

  • Pallavi Vedantam
  • George Huang
  • T. R. Jeremy Tzeng
چکیده

Urinary tract infection (UTI) is a predominant condition in prostate cancer patients. Escherichia coli ORN178 (EC-178) is the uropathogen that causes recurrent infection by binding specifically to adhesins of prostate cancer cells (DU-145 cells). Gold nanoparticles (GNPs) have been used in biodiagnosis of pathogens. In this study, we have investigated the binding time of EC-178 to DU-145 cells, the cytotoxicity and uptake of plain and mannose functionalized and 20 and 200 nm GNPs (d-mannan (Mn)-GNPs). We also investigated the protein corona of GNPs when incubated with fetal bovine serum to study the protein corona which decides the biological fate of the GNPs. It was seen that EC-178 binds and is inside the DU-145 cells by 3 h of incubation period. Plain 20 nm GNPs decrease the percentage of viable cells in 48 and 72 h in log and lag phase of DU-145 cells. It was also observed that the Mn-GNPs were taken up by the DU-145 cells significantly more than the plain GNPs. Protein corona was observed when GNPs were incubated with fetal bovine serum which was confirmed by dynamic light scattering measurements and SDS-PAGE gel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles.

PURPOSE Nanotechnology is an emerging field with significant translational potential in medicine. In this study, we applied gold nanoparticles (GNP) to enhance radiation sensitivity and growth inhibition in radiation-resistant human prostate cancer cells. METHODS Gold nanoparticles (GNPs) were synthesized using HAuCl4 as the gold particle source and NaBH4 as the reductant. Either thio-glucose...

متن کامل

Gold nanoparticles as a radio-sensitizer of colon cancer cells at high megavoltage energies: An In-Vitro study

Introduction: In the point of physical view, there are no significant differences between tumor and normal tissues during radiation therapy. Radio-sensitizers have a key role to address the issue. Exploiting high atomic number, gold nanoparticles (GNPs) have been introduced as novel radio-sensitizers and have shown promising result in the field. Owing to high mass attenuation c...

متن کامل

Gold nanoparticles can induce more apoptosis and double strand breaks on HT-29 cells irradiated by 18 MV photons

Introduction: To increase therapeutic ratio, using radio-sensitizers is recommended and nowadays some types of them are utilized clinically. In recent years, Gold nanoparticles (GNPs) were considered as radio-sensitizers in many studies due to high atomic number. Although theoretical works showed that GNPs have an insignificant effect at MV energies, some In-vitro and In-vivo s...

متن کامل

Enhancement of radio-sensitivity of colorectal cancer cells by gold nanoparticles at 18 MV energy

Objective(s): Taking advantage of high atomic number of gold nanoparticles (GNPs) in radiation dose absorbing, many in vitro and in vivo studies have been carried out on using them as radio-sensitizer. In spite of noticeable dose enhancement by GNPs at keV energies, using this energy range for radiotherapy of deep-seated tumors is outdated. The aim of the present work was to examine the effect ...

متن کامل

Plasmonic Nanostructures and Applications

Gold nanoparticles with unique optical properties may be useful as biosensors in living whole cells. Using a simple and inexpensive technique, we recorded surface plasmon resonance (SPR) scattering images and SPR absorption spectra from both colloidal gold nanoparticles and from gold nanoparticles conjugated to monoclonal anti-epidermal growth factor receptor (anti-EGFR) antibodies after incuba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013